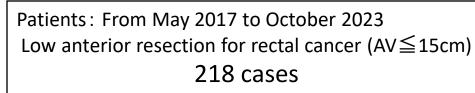
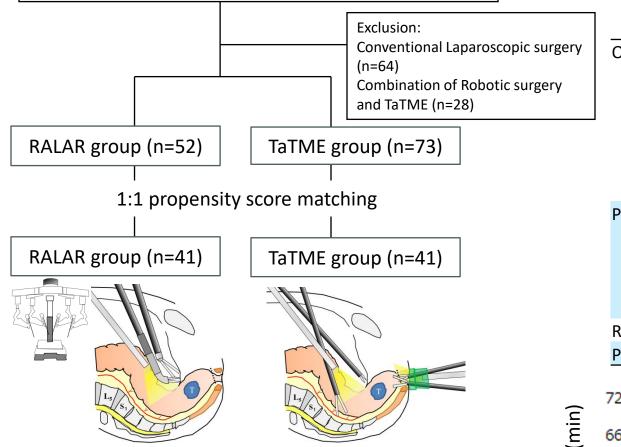


DOES THE TRANSANAL APPROACH REDUCE SURGEON WORKING TIME COMPARED TO ROBOTIC SURGERY IN RECTAL CANCER RESECTION?

<u>Hiroshi Hasegawa</u>, Takeru Matsuda, Kimihiro Yamashita, Ryuichiro Sawada, Naoki Urakawa, Hironobu Goto, Shingo Kanaji, Yoshihiro Kakeji

Department of Surgery, Kobe University


Introduction


Low anterior resection for rectal cancer sometimes requires a long operation time and is associated with overtime. Japanese work style reform for physicians, which became law in April 2024, regulates overtime limits (<960 hours/year), and there is an increasing need to reduce operating time.

This study aimed to determine whether robot-assisted low anterior resection (RALAR) or transanal total mesorectal excision (TaTME) is more useful in reducing surgeons' working time in next-generation minimally invasive surgery for rectal cancer.

Materials and methods

Single-center retrospective study

Results

Table 1. Patient backgrounds after propensity score matching

	RALAR group(n=41)	TaTME group(n=41)	Р
Age, median(range)	68(44-87)	68(29-85)	0.892
Sex, male/female (%)	26/15(63.4/36.6)	26/15(63.4/36.6)	1.000
ASA-PS 1/2/3 (%)	4/33/4(9.8/80.5/9.8)	5/32/4(12.2/78.0/9.8)	0.939
BMI, median (range)	23.5(17.0-35.3)	23.0(13.8-38.7)	0.826
Histology Adenocarcinoma/Others (%)	38/3(92.7/7.3)	33/8(80.5/19.5)	0.105
AV, cm, median(range)	10(5-15)	6(3-10)	<0.001
cT 0-1/2/3/4 (%)	8/15/9/9(19.5/36.6/22.0/22.0)	16/10/14/1(39.0/24.4/34.1/2.4)	0.011
cN 0/1/2 (%)	30/7/4(73.2/17.1/9.8)	32/6/3(78.0/14.6/7.3)	0.867
cM 0/1 (%)	39/2 (95.1/4.9)	39/2 (95.1/4.9)	1.000
Neoadjuvant therapy No/Chemotherapy /Chemoradiotherapy (%)	38/1/2(92.7/2.4/4.9)	25/ <mark>5/11</mark> (61.0/ 12.2/26.8)	0.003
Anesthesia technique General/+Nerve blocking /+Epidural anesthesia (%)	7/18/16(17.1/43.9/39.0)	7/18/16(17.1/43.9/39.0)	1.000
Lateral lymph node dissection, No/Unilateral/Bilateral (%)	38/3/0(92.7/7.3/0)	38/3/0(92.7/7.3/0)	1.000
lleostomy, No/Yes (%)	33/8(80.5/ 19.5)	1/40(2.4/ <mark>97.6</mark>)	<0.001

Table 2. Operative and postoperative outcomes

• •	•		
	RALAR	TaTME	Р
	group(n=41)	group(n=41)	Р
Operative outcome			
(A)Operating room stay time, median, min(range)	437 (321-680)	344 (254-538)	<0.001
(B)Operative time, median, min(range)	356 (222-584)	253 (158-430)	0.001
(A)-(B) median, min(range)	94 (66-121)	95 (57-125)	0.822
Blood loss, median, g(range)	0(0-50)	0(0-175)	0.003
Postoperative complication(Clavien-dind	o Grade≧2)		
Anastomotic leakage, n(%)	2(4.9)	1(2.4)	0.556
Intra-abdominal abscess, n(%)	3(7.3)	2(4.9)	0.644
Small bowel obstruction, n(%)	3(7.3)	7(17.1)	0.177
Urinary disfunction, n(%)	0(0)	1(2.4)	0.313
Reoperation, n(%)	2(4.9)	2(4.9)	1.000
Postoperative stay, median, day(range)	13 (9-40)	18 (8-47)	0.001

Figure 1. Patient flow chart, Parameters used in propensity score matching are: sex, body mass index (BMI)>25, anesthesia method, and extent of lateral lymph node dissection

Outcomes to be evaluated

- Operating room stay time (Time from patient entry to operating room to patient exit)
- Operative time
- Postoperative complication rate

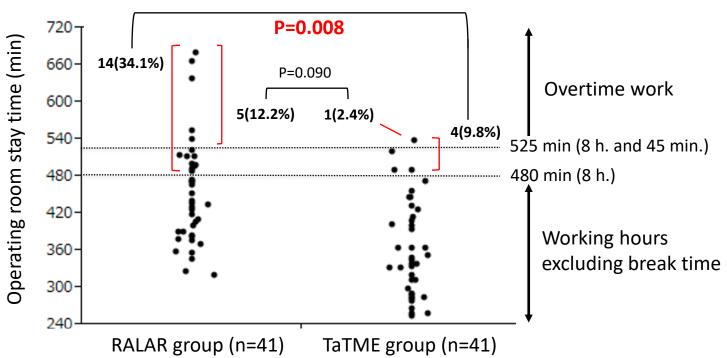


Figure 2. Operating room stay time

Summary of results

- •Patients' background factors were adjusted using propensity scores.
- The distance from the lower edge of tumor to the anal verge was shorter in the TaTME group,
- and the rate of neoadjuvant therapy and construction of ileostomy was higher in the TaTME group (Table 1).
- •Operating room stay time and operative time were significantly shorter in the TaTME group. There was no significant difference in postoperative complications between the two groups.
- Postoperative hospital stay was significantly longer in the TaTME group (Table 2).
- •The rate of operating room stay time exceeding 8 hours was significantly higher in the RALAR group (Figure 2).

Discussion/ Conclusion

- TaTME has a shorter operative time than robotic surgery, thereby reducing operating room stay time.
- Compared to robotic surgery, TaTME requires more surgeons during the procedure and a longer hospital stay for the patient to learn the stoma treatment.
- The limitation of this study is that both robotic surgery and TaTME may be affected by the learning curve effect. A comparison of surgical outcomes after both procedures have matured would yield more useful results.

In conclusion, TaTME is more useful than robot-assisted low anterior resection in reducing surgeons' work hours in rectal cancer resection.