

Determining the Optimal Ki-67 Cutoff Point in Malaysian Patients With Breast Cancer.

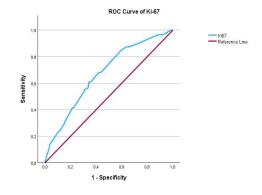
CV Song¹, CH van Gils¹, CH Yip², R Pathmanathan², M Md Yusof², MM Abdullah², YC Foo², BK Yap², N Bhoo-Pathy³

- 1. UMC Utrecht, Utrecht, The Netherlands
- 2. Subang Jaya Medica Centre, Selangor, Malaysia
- 3. Universiti Malaya, Kuala Lumpur, Malaysia

Introduction: Ki-67 is a prognostic biomarker for breast cancer. The optimal cutoff to differentiate low Ki-67 from high Ki-67 in clinical decision making is unclear. We investigated the optimal cutoff value for dichotomising Ki-67.

Materials and methods: Data from a hospitalbased breast cancer registry in Malaysia was used, where women newly-diagnosed with stage I to stage III breast cancer between 2014 and 2016 were included. Patients were divided into low Ki-67 vs. high Ki-67 groups using different Ki-67 cut-off values (10%, 15%, 20%, 25%, 30%). All-cause mortality between the groups were compared using Cox regression, including age, tumor size, number of positive lymph nodes, estrogen receptor expression and human epidermal growth factor receptor 2 expression. Univariable ROC curve analysis and Youden's Index were used to determine the optimal cutoff value in predicting mortality within five years.

Results: We included 912 patients. Median age was 51 years, and a vast majority of patients were Chinese (87.5%). Patients most commonly presented with stage I disease (39.7%), followed by stage II disease (36.1%). Over a median follow-up of 86 months, 88 deaths were observed. The median Ki-67 was 10%. Patients with higher Ki-67 had worse survival; hazard ratios ranged from 1.69 (95% CI: 1.01 – 2.82) at a cutoff of 10%, to 1.96 (95% CI: 1.16 – 3.29) at cutoff of 30%. ROC curve analysis, Youden's Index indicated that a Ki-67 value of 16.5% was optimum. The corresponding hazard ratio was 1.72 (95% CI: 1.06 – 2.78). Conclusion: In this cohort of multiethnic Asian patients, Ki67 appeared to be an independent prognostic factor of poorer survival. The cutoff point derived from the present analysis (16.5%) supports the use of 15% as the optimal cut-off value for Ki67 in Asian populations.


Limitation: There is lack of standardized Ki-67 measurement across institutions. Hence, our results may not be applicable to other institutions.

Summary:

-Ki-67 is an important prognostic factor for breast cancer patients.

-Higher Ki-67 percentage is associated with poorer survival.

-Our findings suggest a cut-off of 15% is optimal for differentiating low/ high Ki-67.

Ki-67	Hazard ratio*	Sensitivity %	Specificity %	PPV %	NPV %
Cutoff	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)
10%	1.69	70.11	54.30	13.93	94.51
	(1.01 - 2.82)	(59.35 - 79.46)	(50.83 - 57.74)	(12.16 - 15.91)	(92.54 - 95.99)
15%	1.67	60.92	64.24	15.23	93.97
	(1.03 - 2.71)	(49.87 - 71.21)	(60.86 - 67.52)	(12.92 - 17.87)	(92.27 - 95.32)
20%	1.47	41.38	77.70	16.36	92.63
	(0.93 – 2.34)	(30.92 - 52.45)	(74.70 - 80.50)	(12.87 - 20.57)	(91.30 - 93.77)
25%	1.65	31.03	84.36	17.31	92.06
	(1.02 - 2.68)	(21.55 - 41.86)	(81.70 - 86.78)	(12.84 - 22.92)	(90.95 - 93.05)
30%	1.96	24.14	88.36	17.95	91.70 [°]
	(1.16 – 3.29)	(15.60 - 34.50)	(85.98 - 90.47)	(12.60 - 24.93)	(90.73 – 92.57)

*adjusted for age, size, lymph nodes, estrogen receptor and HER2 receptor