

THE PROGNOSTIC IMPLICATIONS OF PERIOPERATIVE SERUM CHOLESTEROL LEVELS IN PATIENTS WITH GASTRIC CANCER

Atsushi Yamamoto, Hirotaka Okamoto

Department of Surgery, Tsuru Municipal General Hospital, Yamanashi, Japan

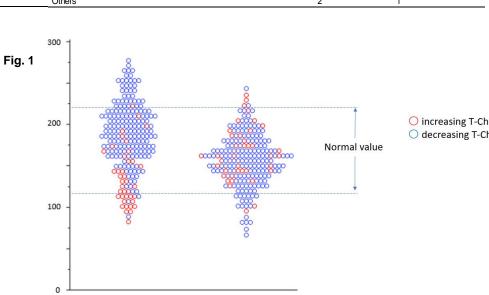
<u>l</u>	<u>ntr</u>	OC	<u>luc</u>	<u>ctic</u>	<u>on</u>		
~	_					•	

Evaluation of nutritional status is essential in patients with GC, and nutrition is greatly involved in the maintenance of immune function and continuity of adjuvant chemotherapy

>T-Cho is rarely used as a postoperative nutritional index, and the significance of the changes in perioperative T-Cho levels has not been clarified.

➤In the present study, we investigated the clinical significance of changes in perioperative T-Cho levels by measuring the preoperative and postoperative T-Cho levels in patients with GC who underwent gastrectomy.

Age (years) (mean±SD)	68.9±11.7		decreasing T-Chol	increasing T-Chol	p value
Gender, male / female	139 / 73	Age, < 69 / 69 ≤	79 / 94	15 / 24	0.592
Type of procedure		Gender, male / female Post operative body weight, increasing / decreasing	112 / 61 6 / 125	27 / 12 3 / 28	0.710 0.375
Total gastrectomy	106 (50.0)	Preoperative Alb, high / low	100 / 73	8 / 31	< 0.001
Distal gastorectomy	92 (43.4)	Postoperative lymphocyte, increasing / decreasing	92 / 81	26 / 13	0.154
Proximal gastorectomy	2 (0.9)	Type of procedure , Total gastrectomy / Others	91 / 82	15 / 24	0.156
Others	12 (5.7)	pT stage, pT1-3 / pT4	107 / 66	21 / 18	0.370
pT stage, pT1-3 / pT4n	128 / 84	Lymphatic invasion, negative / positive	22 / 151	1 / 38	0.086
pN stage, pN0 / pN1n	44 / 168	Venous invasion, negative / positive	35 / 138	10 / 29	0.516
lymphatic invasion, negative / positive	23 / 189	Tumor size (mm), ≤ 50 / 50 < Histological type, differentiated / undifferentiated	82 / 91 99 / 74	12 / 27 21 / 18	0.074 0.723
venous invasion, negative / positive	45 / 167	pStage, II / III	88 / 85	19 / 20	0.860
Tumor size (mm) (mean±SD)	61.7±33.2	Macroscopic appearance, localize / diffuse	65 / 108	14 / 25	1.000
Histological type, differentiated / undifferentiated	120 / 92	Adjuvant chemotherapy, present / absent Recurrence type	97 / 76	18 / 21	0.289
pStage, II / III	107 / 105	Lympatic	23	8	0.977
Macroscopic appearance, localize / diffuse	79 / 133	Hematogenous	15	4	
Adjuvant chemotherapy, present / absent	115 / 97	Peritoneal Others	22	9	


Materials and methods

underwent gastrectomy.

This retrospective study enrolled 212 patients with pathological stage II/III GC who underwent gastrectomy between January 2004 and February 2020. (Table 1) To define elevated T-Cho levels, we reviewed the preoperative serum T-Cho just before surgery and postoperative serum T-Cho a month after surgery in patients with GC who

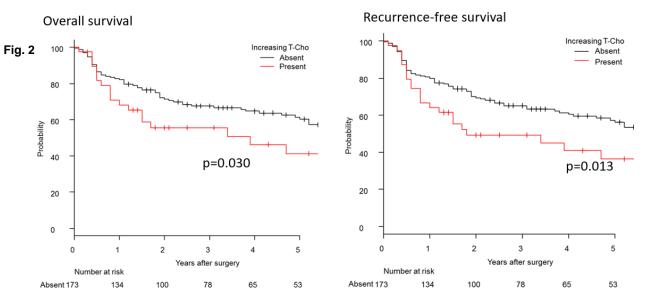
Based on the perioperative serum T-Cho results, we categorized the patients into two

groups, the increased and decreased T-Cho groups.

Results

Patients with increased serum T-Cho levels had significantly lower preoperative serum albumin levels (p < 0.001).

The increasing group tended to have low serum T-Cho levels before surgery (Fig. 1), suggesting that patients with increased serum T-Cho levels may have a poor nutritional status before surgery. (Table 2) Regarding the recurrence pattern, no significant difference was found between the increasing and decreasing serum T-Cho levels in patients with GC (p = 0.977). (Table 2)


Patients with increased serum T-Cho levels after gastrectomy had significantly lower overall and recurrence-free survival rates than those with decreasing T-Cho levels. (Fig. 2)

Increased T-Cho (p=0.040), pathological stage (p < 0.001), and the administration of adjuvant chemotherapy (p=0.006) were independent predictors of recurrence-free survival of patients with GC. (Table 3)

These patients had early recurrence, and as a result, had a poor prognosis. Hematogenous recurrence occurred in 4 four of the 10 patients. (Supplemental Table)

Supplemental Table. Clinicopathological features of patients with the highest rate of increased serum T-Cho levels after surgery

Rate of increase	Preoperative T-cho	Postoperative T-cho	Age	Gender	pStage ^a	Adjuvant chemotherapy	Recurrence type	Years after surgery
1.71	100	171	84	male	IIIA	absent	Hematogenous	0.8
1.69	95	161	67	male	II	absent	Lympatic	1.6
1.63	109	151	74	male	IIIA	present	Peritoneal	1.5
1.61	109	176	56	male	II	present	No Recurrence	6.8
1.54	102	157	79	female	II	absent	No Recurrence	4.7
1.52	112	170	76	female	II	present	No Recurrence	7.9
1.42	119	169	60	male	IIIA	present	Lympatic	6.7
1.42	142	201	80	male	II	absent	Hematogenous	0.6
1.40	107	150	67	female	IIIB	present	Peritoneal	1.5
1.35	101	136	85	female	IIIA	absent	Hematogenous	1.1

Pre-operation

Table 3. Cox proportional hazard model for 5-year recurrence free survival in patients with gastric cance

Variable	Univariate		Multivariate			
	HR (95% CI)	p value	HR (95% CI)	p value		
Age, 69 < vs ≤ 69	1.54 (1.02-2.33)	0.039	1.41 (0.90-2.21)	0.133		
Gender, female vs male	1.23 (0.79-1.91)	0.369	-	-		
Postoperative Lymphocyte, decreasing vs increas	ir 1.26 (0.82-1.91)	0.288	-	-		
Preoperative Alb, low vs high	1.84 (1.22-2.78)	0.004	1.39 (0.86-2.24)	0.178		
Type of procedure, total vs others	1.46 (0.97-2.12)	0.072	-	-		
Lymphatic invasion, positive vs negative	2.28 (0.92-5.61)	0.074	-	-		
Venous invasion, positive vs negative	2.17 (1.20-3.90)	0.010	1.48 (0.80-2.75)	0.210		
Tumor size (mm), 50 < vs ≤ 50	1.32 (0.87-2.00)	0.192	-	-		
Pathological type, differentiated vs undifferenciate	ec 1.16 (0.77-1.76)	0.469	-	-		
pStage ^a , III vs II	3.46 (2.19-5.44)	< 0.001	4.28 (2.65-6.91)	< 0.00		
Macroscopic appearance, diffuse vs localize	1.01 (0.67-1.54)	0.952	-	-		
Adjuvant chemotherapy, absent vs present	1.67 (1.11-2.51)	0.015	1.86 (1.20-2.88)	0.006		
Transition of T-Chol value. increase vs decrease	1.78 (1.11-2.83)	0.016	1.70 (1.02-2.81)	0.040		

Discussion

> Patients with GC with increased serum T-Cho levels after surgery tended to have low Alb levels before surgery, suggesting that many of these patients had a poor nutritional status before surgery.

>Prolonged fasting leads to low triiodothyronine levels, resulting in reduced LDL receptors on the cell membrane. Thus, serum T-Cho level is increasing.

Kobayashi M, Sano R, Oikawa S, Abe R, Fujii Y, Goto Y and Yamauchi Y: Lipids Metabolism during 10-days-fasting of Psychosomatic Patients. Journal of Atherosclerosis and Thrombosis, 1986, 14: 1155-1160.

- → T-Cho levels may reflect nutritional status, so the poor nutritional status might make prognoses worse with GC patients.
- >The LDL receptor is overexpressed in certain types of cancer cells. The LDL receptor has a pro-tumorigenic effect mediated by the enhancement of cell growth or migration.

Gallagher EJ, Zelenko Z, Neel BA, Antoniou IM, Rajan L, Kase N, LeRoith D. Elevated tumor LDLR expression accelerates LDL cholesterol-mediated breast cancer growth in mouse models of hyperlipidemia. Oncogene 2017, 36: 6462-6471. Excess lipids stored in organelles called lipid droplets (LD) are a key resource for fueling the energy-intensive process of metastasis in pancreatic cancer.

Rozeveld CN, Johnson KM, Zhang L, Razidlo GL. KRAS Controls Pancreatic Cancer Cell Lipid Metabolism and Invasive Potential through the Lipase HSL. Cancer Res 2020, 80: 4932-4945.

Cholesterol may reflect an important index of tumor progression in GC.

>Increased serum T-Cho levels suppress the anti-tumor immune response by deactivating regulatory T cell-controlled expression of genes such as sterol regulatory element binding proteins (SREBPs). Perry C, Beier UH. Cancer aided by greasy traitors. Nature 2021, 591: 204-206.

Conclusion

In the present study, we demonstrated that patients with GC whose serum T-Cho levels increased dramatically after gastrectomy had early recurrence and poor prognosis, suggesting that meticulous surveillance is needed.