

Trans-arterial positive ICG staining-guided laparoscopic anatomic liver resection basedon portal territory for hepatocellular carcinoma

Authors: Yufan Yang, Lei Yang, Jingyi Xu, Jun Yan

Institution: Beijing Tsinghua Changgung Hospital, Tsinghua University

Introduction

- •Anatomic liver resection aiming for the complete removal of the tumor-bearing portal territory (PT) is the optimal treatment for resectable hepatocellular carcinoma (HCC) patients.
- Given the concurrent course of the hepatic artery and portal vein, arterial territory resection can substitute for portal territory resection, enabling complete anatomic resection of the tumor-bearing territory.
- This study aims to explore the application of transarterial indocyanine green (ICG) fluorescence staining-guided laparoscopic anatomic liver resection based on portal territory and to preliminarily assess its safety and efficacy.

Methods

- Participants: Trans-arterial positive ICG staining-guided laparoscopic anatomic liver resection basedon portal territory (**Group A**: 21 patients) VS laparoscopic partial hepatectomy(**Group B**: 29 patients)
- •Inclusion Criteria: Age 18-75 years, any gender.Good overall condition, no contraindications for DSA and laparoscopic liver resection; BCLC stage 0-A, maximum tumor diameter ≤ 5 cm, no major vascular invasion or tumor thrombus, no intrahepatic or extrahepatic metastasis.
- Exclusion Criteria: Prior conversion therapy including chemotherapy, radiotherapy, targeted therapy, or immune checkpoint inhibitors. Recurrent HCC

Figure 1. Study design

Moderately

Poorly

Patient characteristics: Table 1.					
	Group A N=21	Group B N=29	n overall		
Sex:	N-21	N-29	<i>p.overall</i> 0.741		
Female	4 (19.0%)	7 (24.1%)	0.741		
Male	17 (81.0%)	22 (75.9%)			
Age(years)	54.0 (10.7)	58.9 (12.6)	0.153		
AFP	5.14[2.49;55.3]	4.17 [2.41;23.6]	0.133 0.414		
PIVKA-II	81.6 [35.0;213]	44.3 [28.5;183]	0.414 0.443		
BCLC grade:	81.0 [33.0,213]	44.5 [20.5,165]	0.443 0.111		
O	0 (0.00%)	3 (10.3%)	0.111		
A	• •	26(89.7%)			
HBsAg:	21(100.0%)	20(89.7%)	0.441		
Positive	19 (90.5%)	23 (79.3%)	0.441		
	,	,			
Negative	2 (9.52%)	6 (20.7%)	0.722		
ASA grade	12(== 10()	10(50.40)	<i>0.733</i>		
1	12(57.1%)	18(62.1%)			
2	9(42.9%)	11(37.9%)			
Cirrhosis:			0.443		
Yes	14 (66.7%)	15 (51.7%)			
NO	7 (33.3%)	14 (48.3%)			
Child grade:			0.129		
0	0 (0.00%)	4 (13.8%)			
A	21 (100%)	24 (82.8%)			
В	0 (0.00%)	<i>1 (3.45%)</i>			
Albumin	41.2 (2.67)	41.1 (4.27)	0.948		
Tumour size (cm)	2.60 (1.07)	2.96 (1.03)	0.240		
Differentiated degree:	· ·		0.582		
Highly	1 (4.76%)	3 (10.3%)			

18 (85.7%)

2 (9.52%)

25 (86.2%)

1 (3.45%)

Result:

Intraoperative Findings:

- •Clear visualization of intersegmental planes. (Figure 2)
- •Enhanced precision in segmental resection (Figure 3)
- •Shorter portal clamp time: 40 (38.5-68.5) vs 50 (45-67.5) min; P=0.013. (Table 2)
- •Less intraoperative blood loss: 100 (50-200) vs 150 (100-200) ml; P=0.031. (Table 2) Postoperative Outcomes:
- •No significant difference in postoperative complications.
- •Higher 1-year and 2-year Disease-Free Survival (DFS) in the Group A: 80.96% and 66.66% vs 68.97% and 58.62% in the Group (P=0.52). (Figure 3)

Figure 2. A, B, C: Three-dimensional visualization of surgical planning based on preoperative CT imaging data, with green indicating the segment to be resected. D, E, F: Intraoperative real-time fluorescence imaging, with green indicating the segment to be resected.

Figure 3. The resected liver surface, guided by fluorescence navigation, is highly consistent with the three-dimensional surgical plan.

	Group A	Group B	p.overall
	N=21	N=29	
Postoperativehospital stay (days)	7.05±1.93	7.90±3.255	0.103
Duration of operation (min)	307(209-397)	<i>311(226.5- 355.5)</i>	0.321
Postoperative time to first flatus (days)	2.29±0.561	2.38±0.494	0.604
Hepatic inflowocclusion applied (min)	d 40 (38.5-68.5)	50 (45-67.5)	0.013
Blood transfusion	1 (4.76%)	3 (10.34%)	0.63
Blood loss (ml)	<i>100 (50-200)</i>	<i>150 (100-200</i>) 0.031
Resection margin (cm)	1 (0.5-1.45)	1 (0.4-1.3)	0.22
Ki67	20 (10-40)	25 (13.5-40)	0.578

Table 2. Intraoperative and postoperative data

Figure 3. Disease-Free Survival (DFS)

Conclusion

This study demonstrates that **Trans-arterial positive** ICG staining-guided laparoscopic anatomic liver resection based on portal territory for hepatocellular carcinoma is safe and feasible. It can minimize surgical trauma without compromising the therapeutic effectiveness of anatomic liver resection.